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Photon echoes in a resonant three-level system with arbitrary 
level degeneracy 

Masaki Aihara and Humio Inaba 
Research Institute of Electrical Communication and Department of Applied Physics, 
Faculty of Engineering, Tohoku University, Katahira 2-chome, Sendai, Japan 

Received 14 May 1973 

Abstract. As a sequel to the previous paper, in which photon echoes in a resonant three-level 
system where the energy levels are not degenerate or have two-fold degeneracy were investi- 
gated, we report in this paper the theoretical analysis on photon echoes in a resonant multi- 
level system, with level degeneracy, by a general consideration. With respect to the system 
possessing more than three-fold degeneracy, the intensity of photon echoes depends not 
only on the areas of the exciting optical pulses, but also on their polarization characteristics. 
In particular, i t  was found that some anomalous echoes change their intensities with the 
polarization directions of exciting optical pulses which have different frequency from that 
of the echoes because of the coherent coupling of resonant transitions with common energy 
level and the interference effect of transitions through the degenerate sublevels. In the first 
half of this paper the general formulation on the multi-level system with arbitrary degeneracy 
is performed, and in the second half, the application of the general theory to some typical 
examples is also given. 

1. Introduction 

At the present time there is considerable interest in coherent nonlinear optical phenomena 
where optical pulses with different frequencies are resonant to the multi-energy level 
system, since different transitions with a common energy level combine coherently. 
With respect to the three-level system, Hartmann (1968) suggested the possibility of 
the Raman echo for the first time, and recently some novel results concerning the self- 
induced transparency for the two-photon resonant case (Tanno et a1 1972a, b) and the 
doubly resonant photon echoes (Aihara and Inaba 1973) were reported. 

In particular the coherent nonlinear effect associated with a doubly resonant inter- 
action should exhibit characteristic phenomena inherent to the three-level system, 
because all the energy levels couple strongly with the radiation. These phenomena are 
different from the Raman or two-photon resonant type of interaction where the popula- 
tion of the intermediate level is extremely small due to the off-resonant character. 

From this point, we presented the theoretical analysis on the doubly resonant 
photon echoes in a three-level system in a previous paper (Aihara and Inaba 1973, to be 
referred to as I). It was pointed out that the echoes arise at anomalous times, other than 
at the normal time expected from the simple analysis with the two-level system, depending 
upon the correlation between the inhomogeneous broadening of the different spectral 
lines. The intensity, polarization and propagation direction of the echoes were found to 
depend upon those of the exciting pulses which had frequency different from that of the 
echo. 

1725 
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An important problem concerning the influence of level degeneracy on the echo 
characteristics, however, has been left unsolved in paper I. This problem becomes 
essential if we consider the coherent nonlinear optical phenomena occurring in a time 
shorter than the homogeneous relaxation times. In this case, as the probability of the 
incoherent transitions among the degenerate sublevels caused by the collision in gases or 
the interaction with phonons in solids is negligibly small, the coherent transitions 
among the individual sublevels must be considered exactly. 

The purpose of the present paper is to investigate photon echoes associated with the 
resonant interaction with a multi-level system possessing level degeneracy using general 
considerations. Use is made of a density operator method which has an advantage 
when dealing with the mixed quantum state, since the initial state is in thermodynamical 
equilibrium and the definite phase correlation between degenerate sublevels does not 
exist. In order to get a simple physical insight into the problem, we transform the density 
operator in the Schrodinger picture to the intermediate picture corresponding to the 
rotating frame representation in the classical treatment. A general formulation is 
derived in 8 2 by introducing a unitary operator which diagonalizes the interaction 
hamiltonian, and by obtaining the exact time evolution operator without using the 
perturbation approach. In 4 3, we apply our general results to  some typical examples to 
make our detailed discussion more concrete. 

2. General formulation for the formation of photon echoes 

We consider the system composed of many particles possessing multi-energy levels 
with arbitrary degeneracy which interacts resonantly with optical waves with different 
frequencies. When dealing with this system, we must make use of the density operator 
for the whole system, since photon echoes are phenomena inherent in the many particle 
system. However, if the interaction between particles does not exist, the Liouville 
equation for the whole system can be separated into the equations for the individual 
particles, and the density operator for the whole system can be obtained as the direct 
product of those of the individual particles. Therefore, the starting point of our analysis 
is the solution of the one-particle problem. 

The hamiltonian for a particle interacting resonantly with the radiation field with 
different frequencies can be written, in general, as 

H = H, + H’, (1) 

where E, is the energy eigenvalue of the free hamiltonian H o , p u v  is the electric dipole 
moment operator between levels p and v, E,,(t) is the electric field vector resonant to the 
transition between levels p and v, and E,,,(?) and U,, are its envelope function and polari- 
zation vector, respectively. 



Photon echoes in degenerate three-level systems 1727 

Taking the direction perpendicular to the electric field vector as the quantization 
axis and using the Wigner-Eckart theorem?, equation (3) becomes through the expression 
in terms of the basis vectors for the standard representation 

H' = - J~P,,E,,,~(~) (xkL;vIa,j,m,) (a,j,m,l + xk!:,la,j,m,) (a,j,m,l 
P . V  m,,'.mv 

x (e+ . U,,) cos w,,t + hermitian adjoint, (4) 

where PPy is the reduced matrix element, e ,  is the circular polarization vector, and 
y j ' j p  um,mp is given by x,$,p = (2j,+ 1)- '''1 j , l m p l )  ( j amJ .  

Considering the time evolution of the system, it is convenient to use the density 
operator which is applicable to the mixed state as well as the pure state. The density 
operator ~ ( t )  satisfies the Liouville equation 

We now transform the density operator o(t) in the Schrodinger picture to the intermediate 
picture, as follows ; 

p(t)  = eista(t) e-ist (6) 

S = c S i  Iaj.j,mJ (aJ2mj.I ( 7 )  

where S is a hermitian operator defined by 

i. mi 

and eigenvalues S, are determined to satisfy the relation S,  - S, = U,,. This unitary 
transformation leads to the equation of motion for p(t) 

where 

(9) 

A = h - ' H o - S .  (10) 

H: = eiStHf e - iSt 

Using the rotating wave approximation, equation (9) becomes 

1 
HI = - -P,"Ep"o(d c (xi$"lPm,) ( W I  +k::,,lvm") ( P P I )  (e+  up,) 

P . V  J 2  m,,,m, 

+ hermitian adjoint. (11) 
where the simplified notation /Am,) is used instead of laijim,). 

No matter what we consider the resonant interaction, we must take into account 
the off-resonance caused by the inhomogeneous broadening of the energy level, so that 
the difference between the eigenvalues of A defined by equation ( lo) ,  Ao,,, takes the non- 
zero value determined by 

(12) 

We are now in a position to solve the case where the system is irradiated by a sequence 
of two simultaneous optical pulses with different frequencies which coincide with the 
t See for example Messiah A 1962 Quantum Mechanics vol2 (Amsterdam: North-Holland). 

Am,, = (h- 'E,-S,)-(h- 'E,-S,)  = h - ' ( E P - E , ) - ( S , - S V )  = Q,,-u,,,. 
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centre frequencies of the inhomogeneously broadened spectral lines of the system. For 
sufficiently intense exciting pulses, the magnitude of the off-resonance can be considered 
to be much smaller than the interaction energy, and then we ignore A for the duration of 
the pulse to obtain 

For the period of absence of the pulses, we have 

ih- dp(t) = [A, p(t)]. 
dt 

In the case where the envelope function differs from another one corresponding to the 
different frequency only by a multiplicative number independent of time, equation (13) 
can be solved exactly. For the optical pulses lasting from to  to to + T ,  the formal solution 
is expressed by 

p(t,+z) = exp( -ih-' iini'dfR;(f))p(to)exp(ih-' i r+ 'd tHi( t ) ) .  (15) 

In order to obtain the matrix element of p(to + T ) ,  we introduce the unitary operator V 
defined by 

where D is a diagonal operator in the standard representation. Then equation (15) can be 
rewritten as 

(17) P(to + 7 )  = Tp(to)Tt 

T = exp(-iVDVt) = Vexp(-iD)Vt. 

p(t)  = exp{ -iA(t-t')}p(t') exp{iA(t-t')}. 

where Tis  the time evolution operator given by 

(18) 

On the other hand, equation (14) can be solved simply as 

(19) 

Using the solutions (17) and (19), we derive the expression for the density operator 
after a sequence of two optical pulses 

p(t) = exp{ -iA(t-~,))T'exp( -iAT,)Tp(0)Tt exp(iAs,)Tft exp{iA(t-z,)}, (20) 

where the prime denotes the operator for the second pulse and T ,  is a time interval 
between two optical pulses. 

We suppose that the many particle system is initially in thermodynamical equilibrium, 
and the energy separations between the ground state and the excited states are much 
larger than the thermal energy. Thus we have the initial density operator given by 

where label a denotes the ground state. Substituting this equation into equation (20), 
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we obtain the expression for the matrix element of p(t)  in terms of the matrix element of T 
as 

(Pm,lP(t)lvmv) 
= (2j ,+ I ) - ’  L(pm,, exp{ -iA(t-r,)}T’exp(-iAr,)Tlam,) 

ma 

x (vm,J exp{ - iA(t - TJ} T’ exp( -iAr,)Tlam,)* 

exp{ - iAo,,t + $Ampv + AW,~)T,} = (2J, + 1)- ’ 
r.4 

x 1 (W,l ”c> (h<l Tlam,) (vm,l T’lrtm,)*(qm,lTlam,)*. (22) 
m,,mC,m, 

In order to study the various characteristics of photon echoes, we need an induced 
electric dipole moment by calculating the expectation values of the electric dipole 
moment operator, as follows : 

and 

+,,(t)> = (&I eiSrl?m,) (“lPpvltm<) 

= PMV e {Xk!&(vmvlP(t)IPm,) exp(io,,t) 

= PPV c Cx!&,e + - x’,.,”;,e - 1 (Pm,lP(t) I v m J  exp( - iw,,t) + cc. 

< , v m . w ,  

mY.mY 

+ X~~~~,,(Pm,lP(t)Ivmv) exp( - iw,,t)}e+ + cc 
. .  

(24) 
m l l m  

Substituting equation (22) into equation (24), we obtain a final expression for an induced 
electric dipole moment with frequency oPv after a sequence of optical pulses 

(P,,( t)> = (a,+ 1)- ‘PPV 1 exp{ - iAo,,t + i(Aopv + Aw,~)T,) (&$,,e+ - 
. .  , .  

e , ,  m , m v  

x c (PPI T ’ I b < )  ( b r l  TIam,) 

x (vm,lT’lqm,)*(qm,(T(am,)* exp(- io,,t)+cc. (25)  

ma,m<,m,  

In the case where the frequencies of the incident optical pulses are at the centre 
frequencies of the inhomogeneously broadened spectral lines, Ampv and Amcs can be 
written 

Am,, = apvx, 

Amqr = a,<x. (26) 

Here x is a physical parameter causing the inhomogeneous broadening of the energy 
levels, and we neglect the higher order terms in x with good approximation. For example, 
in gases, xis the velocity of a particle along the line of sight, while, in solids, it is the devia- 
tion of the crystalline field from its mean value. In order to obtain the essential character- 
istics of the radiation emitted spontaneously from the inhomogeneously broadened 
system, we must multiply the distribution function for x in equation (25), and integrate 
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over x. Thus we obtain 

where N is the number of particles and G is the Fourier transform of the distribution 
function for x. 

From equation (27), we can understand the remarkable result that photon echoes are 
also produced at anomalous times different from 2rs depending upon the values a,,e/urv. 
This novel result is caused by the fact that the matrix element of the density operator 
after a sequence of exciting optical pulses, (pm,lplvm,), arises from other matrix elements 
before the second exciting pulse, ( tm&/qm,,) ,  as indicated in equation (22), so that the 
rate of the dephasing process after the first pulses is different from that of the inphasing 
process after the second pulses as suggested in equation (25). One should remark that 
the operators T and T' can have the nonvanishing matrix elements between the levels 
for which the interaction hamiltonian does not have the matrix element, because of the 
coupling of transitions between the levels through a common energy level. 

When the Doppler effect gives rise to the inhomogeneous broadening of lines as in 
gases, the times of the anomalous echoes are determined by the ratio of the energy 
separations since the relation a,,&,, = Q,,#2,, holds. However, for the ions in a ligand 
field where the spatial fluctuation of the static crystalline field contributes to the inhomo- 
geneous broadening of the energy levels, the variation of the energy eigenvalues with the 
magnitude of the crystalline field is complicated ; depending upon not only the electron 
configuration, but also the configuration interaction. Consequently, photon echoes are 
produced at times different from the case of gases even if the ratio of the energy separations 
t2,,,/0,, is the same. 

3. Evaluation of echo characteristics 

In this section we try to apply the general result obtained in the previous section to some 
typical examples to derive explicit expressions and to discuss them in detail. 

3.1. The case j ,  = j,, = j ,  = f 
As we have considered this case in detail in paper I, we mention only the essential point. 
When each energy level has double degeneracy, the problem can be reduced to a non- 
degenerate one by dividing the whole Hilbert space into two subspaces between which 
the interaction hamiltonian does not have the matrix element. This results in the 
intensity and polarization characteristics becoming independent of each other. However, 
one should note that the coupling of the transitions through a common energy level 
leads to the characteristics of the photon echoes, such as intensity, polarization and 
propagation direction, depending upon those of the exciting pulses which have different 
frequencies from that of the echo. 
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3.2. The case j ,  = j, = 1 , j, = 0 

Since we have selected the quantization axis perpendicular to the direction of the exciting 
optical pulses, five states take part in the problem, as shown in figure 1. In this case, the 

m =  -I 0 I 

Figure 1. Schematic representation of the three-level system for j ,  = j ,  = 1 and j b  = 0. Full 
lines connect the states between which the interaction hamiltonian has a nonzero matrix 
element when the quantization axis is selected along the direction perpendicular to that of the 
exciting electric field. 

interaction hamiltonian Hi expressed generally in equation (1 1) becomes 

1 Hi = - -p E (t){i3)(1i exp(-i6ba)+13)(21 exp(isba)) 
2 J 3  

where the simplified notations 11) = la- l), 12) = lal), 13) = IbO), 14) = I C -  1) and 
15) = (cl)  are used. Introducing the pulse area defined by 

epv = ( + ) 1 ' 2 ~  w v  L;+T Epv0(t)  dt, 

we obtain the matrix element of T defined by equation (18) as follows; 

(1ITI1) = (21272) = 1-$cos2y(l-cos$11/), 

(31 7-13} = COS $I), 
(41 7-14) = (51 2-15) = 1 -+ sin2 y( 1 -cos $@), 

(317'11) = -(31T12)* = -i&cosy sin$$ exp(-i6,,), 

(51T13) = -(4)T13)* = -i&sinysin$+exp(-id,,), 

(304 

(30b) 

(304 

(304 

(304 
(51T11) = (4(T(2)* = -~sinycosy(l-~os$11/)exp{ -i(6cb+6ba)), (30f) 

(41Tll) = (51T12)* = -$sin? cos y(1 -~os$II/)exp(i(6,~-6,,)}, (30g) 
(21 TI 1) = - + cos2 y( 1 - cos $+) exp( - 2i6,,), (30h) 

(30i) 
where 6," is an angle between the direction of the electric field of the exciting pulse with 

(51 T14) = - $ sin2 y( 1 - cos ++) exp( - 2iSC,), 
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frequency U,,, and the reference axis, and y = tan-'(Bcb/eb,) and II/ = (eto+ 6Zb)1'2. Other 
matrix elements can easily be obtained from the unitarity of T, that is, ( f l T l i )  differs 
from ( i l T l f )  only by a sign of 6. The matrix element of T, ( f lT l i ) ,  means physically 
the probability amplitude that if a particle is initially in a state ti), then after a pulse the 
particle will be in a state I f ) .  One should pay attention to their phases as well as their 
absolute values. For example, the transition probabilities from 11) to ( 3 )  and from (2) to 
13) are the same, but the phases of their transition probability amplitudes differ corres- 
ponding to the polarization direction of the exciting pulse, as indicated in equation 
(30d). 

Substituting equations (30aH30i) into equation (27), we obtain the induced polariza- 
tion, which is given in the appendix. The results concerning the echo polarization and 
the dependence of the echo intensity on the polarizations of the exciting pulses in this 
case are summarized in table 1. The principal results obtained are: (a) in the case where 
the polarization directions of the sequence of two exciting pu!ses with the same frequency 
are parallel, the intensity characteristics are the same as the nondegenerate case except 
for a multiplicative constant ; (b)  the echoes, except for those appearing at  - prS and 
- p- 'z,(p = aeb/aba), are polarized in the direction of that for the second pulse with the 
same frequency ; (c) the echo intensity appearing at the time 22,  varies as cos2(6;, - d,,,) in 
the same way as the two-level system (Gordon et a1 1969), while the anomalous echo 
intensities, except for two echoes, also or only depend upon the polarization directions of 
the exciting pulses, with different frequencies from that of the echo, as cos2(6;,-6,,); ( d )  
with respect to the echoes appearing at  the times -PT, and - - f i - l ~ ~ ,  both the echo 
polarization and the change of the echo intensity with the polarization directions of the 
exciting pulses depend upon the areas of the exciting pulses through the matrix elements 
of T'  for the nondegenerate case, (alT'la) or (clT'lc). 

The result (c) inherent to the three-level system is caused by the two facts that, first, 
the transition probability between the ground state lam,) and the higher excited state 
(cm,) takes a nonzero value caused by the coupling of the transitions b-a and c-b, and, 
second, some matrix elements of the density operator related to the different degenerate 
states after the first exciting pulse interfere with each other when forming the final density 
operator by the second exciting pulse. The result ( d )  is also substantial to the three-level 

Table 1. Summary of echo polarizations and dependence of echo intensities on the polariza- 
tions of exciting optical pulses, for j ,  = j ,  = 1 and j, = 0. The analytical expressions of 
6 , ,  Q, , a 2  and Q2 include the areas for the second exciting pulses Ob,, and e;, and hence for 
I)' and y', and are given in the appendix. P = aCb/ab,. 

Echo Echo 
frequency formation time 

Echo Polarization dependence 
polarization of echo intensity 
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system. This phenomenon is caused by the fact that these two anomalous echoes are 
formed through the matrix elements of T' between the degenerate sublevels. 

3.3. The case j ,  = j ,  = 0,  j ,  = I 

This case (figure 2) is more complicated than the two examples studied previously 
because the eigenvalues of the interaction hamiltonian depend upon the polarizations 
of the exciting pulses, so that the magnitude of the matrix elements of T as well as their 
phases takes a cumbersome form. Therefore, we show only the results in table 2, for the 
case where the polarization direction of the exciting pulse with the different frequency is 
parallel. What is evident from table 2 is that the polarization and dependence of the 
intensity appearing at (1 + p)z, and (1 + p - ' ) . ~ . ~  on the polarizations of the exciting pulses, 
change with the pulse area ofthe second pulse. Furthermore, with respect to this example, 
the intensity of echoes appearing at (2 +p)z, and (2 +p- ' )z ,  is independent of the polari- 
zation of the exciting pulses. These results can be understood in analogy with the case 
studied in 43.1, since the matrix element of the density operator between the non- 
degenerate ground and higher excited states after the first pulse, contributes to such 
echoes. 

;c=O 

;,=I 

/,=O 
m= - I  0 I 

Figure 2. Schematic representation of the three-level system for j ,  = j ,  = 0 and j ,  = I .  Full 
lines connect the states between which the interaction hamiltonian has a nonzero matrix 
element when the quantization axis is selected along the direction perpendicular to that of 
the exciting electric field. 

Table 2. Summary of echo polarizations and dependence of echo intensities on the polariza- 
tions of exciting optical pulses, for j ,  = j ,  = 0 and j ,  = 1. Analytical expressions of 6 ,  and 
Q3 include $', and are given in the appendix. = acb/ab.. 

Echo Echo Echo Polarization dependence 
frequency formation time polarization of echo intensity 

6' 

6' 
6' 
6' 

6' 
6 3  
6' 
6' 
6' 

6 3  

cosZ(6' - 6 )  
Q: 

cosZ(6' - 6 )  

cosZ(6' - 6 )  
Q: 

COSZ(6' - 6 )  

constant 

constant 

constant 

constant 
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3.4. The case j ,  = j ,  = j ,  = 1 

In this case, the nine-dimensional Hilbert space is composed of two subspaces between 
which the interaction hamiltonian does not have the matrix element as shown in figure 3. 
Therefore, the problem can be reduced to the cases studied in $8 3.2 and 3.3, and the 
results are shown in table 3. 

-7-T 

m= -I 0 I ' O  

Figure 3. Schematic representation of the three-level system for j ,  = j b  = j, = 1. Full and 
broken lines show the two independent sets of transitions caused by the optical wave with 
linear polarization perpendicular to the quantization axis. 

Table 3. Summary of echo polarization and dependence of echo intensity on the polariza- 
tions of exciting optical pulses, forj, = j, = j, = 1. Analytical expressions of 6,, Q4, 6,, Q,, 
6,, and Q6 include the areas of the second exciting pulses eba and elb and hence for $' and y ' ,  
and are given in the appendix. ,9 = acb/abO. 

Echo Echo Echo Polarization dependence 
frequency formation time polarization of echo intensity 

6' 

6' 
6' 

64 

6, 

6' 
6 4  
6' 
6' 
66 

cosZ(6' - 6) 
Q: 
(1 + cos(6'-6)}2 
cosZ(6' - 6) 
Q: 
cosZ(6'- 6) 
Q: 
{1+ cos(6'-6)}2 
cosZ(6' - 6) 

3.5. The case j ,  = j ,  = 4, j ,  = f 
A distinctive feature of this case is that the magnitudes of the matrix element of the 
electric dipole moment operator between the different degenerate sublevels are different 
because of the nature of the Clebsch-Gordan coefficient. Therefore, the interference 
effect between the transitions through the different degenerate sublevels does not cause 
the echoes to vanish completely even when the polarization direction of the second 
exciting pulse is perpendicular to that of the first exciting pulse. Hence the echo intensity 
varies as 1 - k sin2(6L,-S,,) (k = or E) and the polarization direction of the echo 
radiation is not parallel to that of the second exciting pulse as shown in table 4. 
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Figure 4. Schematic representation of the three-level system for j ,  = j ,  = 4 and j ,  = i. Full 
and broken lines show the two independent sets of transitions caused by the optical waves 
with linear polarization perpendicular to the quantization axis. 

Table 4. Summary of echo polarization and dependence of echo intensities on the polariza- 
tions of exciting optical pulses, for j ,  = j ,  = 4 and j ,  = i. Analytical expressions of 6,, 
Q,, 6, and Q, include the areas for the second exciting pulses e,,, and e:, and hence for $' 
and y ' ,  and are given in the appendix. B = acb/ab0. 

Echo 
Echo formation 
frequency time Echo polarization 

Polarization dependence of 
echo intensity 

&,+tan- ' t tan(& - db0) 

6;. -tan- ' t tan(&, - aCb) 
6;,+tan-'f tan(6&-Bb0) 

-tan- '  + tan(6;,-6,,) 

Si, + tan- ' + tan(&, - aCb) 
6 7  

6:, + tan- + tan(&, - bCb) 

6;,-tan-'+tan(d;,,-6ba) 

SA, + tan- ' + tan@;, - hCb) 
-tan- '+ tan(6&-Sba) 

6;,+tan-'+ tan(6;o-6bo) 

6, 

1 -E sin2(6b,-6,) 

1 -E sin2@;,- aCb) 
{ 1 -a sin2(& - 6,)) { 1 -E sin2(&, - 6<,)} 

1 -E sin2(&, - deb) 

Q: 
1 - sin2(&, - aCb) 
1 -ssin2(6b,-6,) 

{ 1 - $ sin2(6:, - a,,)} { 1 -e sin2(6;, - 6,,~} 

3.6. The case j ,  = j ,  = i, j ,  = 3 
This case is very complicated compared with the earlier examples since we must analyse 
the coupling of the Q and R branch transitions, while in the cases studied in $5 3.1-3.5. 
the two transitions are of the same type of branch. This fact leads to the cumbersome 
expression for the photon echo arising at time ( ~ + / I - ! ) T , ,  as shown in table 5. Table 5 
also shows that the normal echoes with frequencies a b o  and a,,, have the same character- 
istics as the cases studied in $§ 3.1 and 3.5, respectively. 

In the case of j ,  = 3 and j ,  = j ,  = i, we obtain the results by exchanging the sub- 
scripts cb and ba, and /I and p- ' ,  respectively. 

Before completing the description of this section, one should note that the mathe- 
matical expressions in the last columns of tables 1-5 only show the dependence of echo 
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io= 4 
m= -3  -4 4 3  
Figure 5. Schematic representation of the three-level system for j ,  = and j ,  = j ,  = 4. Full 
and broken lines show the two independent sets of transitions caused by the optical wave 
with linear polarization perpendicular to the quantization axis. 

Table 5. Summary of echo polarizations and dependence of echo intensities on the polariza- 
tions of exciting optical pulses forj, = 4 and j ,  = j ,  = 3. Analytical expressions of 6, and 
Q, include the areas for the second exciting pulses e, and e;, and hence for $' and y ' ,  and 
are given in the appendix. B = acb/abO. 

Echo 
Echo formation Polarization dependence of 
frequency time Echo polarization echo intensity 

2s6a - 6ba 

6;. + tan- ' f tan(&, - hcb) 

26;, - 6, + tan- ' f tan@, - &,) 

6;. - tan - ' + tan@, - acb) 
66, - tan - + tan(&, - deb) 

a;, + tan - 4 tan(&, - deb) 

aib + tan - f tan(&, - aha) 

a:, + tan - I f tan& - a,,, 
+tan - f tan@;, - a,,)} 

6;b - tan - I f tan(& - aba)  

89 

intensity on the polarizations of the exciting pulses and do not indicate the dependence 
on the areas of the exciting pulses even for the expressions involving the pulse areas. The 
full expressions for the electric polarization which gives rise to photon echoes are 
summarized in the appendix for some typical examples treated in this section. It is to be 
remarked that, when the polarization directions of the exciting pulses are all parallel, 
the intensity characteristics coincide with those for the nondegenerate case with respect 
to all the examples analysed in this section. 

The results obtained in this section are also applicable to the case of gb > 4 ,  that is, 
the resonance Raman type of interaction, only by exchanging the sign of p in tables 1-5. 
In the case of > $, that is, the doubly resonant interaction with the common ground 
state, the dependence of echo intensity on the areas for the first pulses is different because 
of the difference of the initial conditions. 
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4. Conclusion 

In the present paper, we have made a theoretical study of photon echoes associated with 
a multi-level system by taking into account the correlation between the inhomogeneous 
broadenings of the different spectral lines. In the first half of this paper the general 
formulation applicable to the many-particle system with arbitrary degeneracy was 
derived, and in the second half, the application of the general theory to some important 
examples was given. Novel and interesting features were obtained quantitatively with 
respect to the polarization and intensity characteristics of the echo radiation. In particu- 
lar, it is possible for the anomalous echoes to provide extensive information about the 
energy level structure, kinetics of the interaction between particles, and the atomic 
coherence inherent in the multi-level system. The results obtained in this paper seem to 
indicate that experimental studies on nonlinear optical behaviour in coherently excited 
many-particle systems would be worthwhile. 

Appendix. The analytical expressions for the electric polarization which give rise to the 
echoes 

A.1. The case j ,  = jb = j, = $ 
For this case we refer the reader to paper I. 

A.2. The case j ,  = j, = 1 ,  jb = 0 
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Here 

AzrS = cos y sin $$(cos2 y cos +$ + sin’ y), 

Airs  = cos2 y‘ sin2&‘, 

4 2  +p)rs = + sin 2y( 1 - cos $$)(cos2 y cos $$ + sin’ y) ,  

Ai2 + P ) r s  = + sin 2y‘ cos y’ sin +$’(I -cos f$’), 

A, + p)rs = f sin 2y cos y sin f$( 1 - cos +$), 

Ail + p)rs = 3 sin 2y’ cos f$’( 1 -cos f$‘), 
- 

4 1  -f9)rs - 4 1  +p)r.? 

A; ,  - p ) r s  = f sin 2y’ sin2 $$’, 

A - h  = 4 2 + p ) r , ’  

A’_ prs = sin y’ sin $$’(cos2 y’ cos 

B’r, = 4 1  + p ) r s 9  

B ( 2 + p - 1 ) r s  - 4 2 + p ) r . ?  

Bi2 + p  - l )rs  = 3 sin 2y‘ sin $$’( 1 - cos +$‘), 

B ( l + p - l ) r s  = A2r .9  

B;l + p -  1)r, = 4 1  +))?,’ 

B(l-p-l)rs = A2,d 

B - p - l r s  = A(2+p)r,, 

+ sin’ y‘) ,  

l?2rs = sin’ y ’  sin2 ++’, 

- 

B [ l - p - l ) T s  = ’;1-/3)rS’ 

= cos y’ sin +$’(cos2 y ‘+  sin’ y’ cos +I//), 

Q1 = cos(6:b-6cb){(alT’la)’ ~ 0 ~ ~ ( 8 ~ , - 6 ~ , ) + s i n ~ ( 6 ~ , - 6 ~ , ) } ’ ~ ~ ,  

Q 2  = cos(6b,-6bo){(CJT’lC)’ cos2(s:b-6cb)+sin2(6:b-6cb)}112, 

where 

(a1 T’la) = cos’ y’ cos+$‘ + sin’ y’, 

(clT’lc) = sin’ y’cos+$’+cos’ y‘ .  

( A 4  

(A.3) 

(‘4.4) 

(A.5) 

( A 4  

(A.7) 

(‘4.8) 

(A.9) 

(A. 10) 

(A.11) 

(A.12) 

(A. 13) 

(A.14) 

(A. 15) 

(A. 16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 
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A.3. The casej, = j ,  = 0, j b  = 1 

[ - A27sA;7s cos(6’ - 6)G{ ab,(t - 27,)) (i cos 6’ + j  sin 6‘) 2NPba 
(P(t))echo = - J3 

[ - B27sB27s cos(6’ - 6)G{ aCb(t - 22,)) (i cos 6’ + j sin 6’) 

tan(6’-6) 6, = &-tan-’ 
(blT‘lb) ’ 

Q,  = ((blT’lb)2 cos2(6’ - 6)+ sin2(6’ - S)} - ‘ I 2 ,  

(blT’lb) = COS +I(/’. 
and 

(A.27) 

(A.28) 

A.4. The case j ,  = j ,  = j ,  = 1 

[ - 2A2,A;7s COS(S’ - 6)G{ ab,(t - 27,)) (i COS 6’ + j sin 6’) 2NPba 
(P(t))echo = - 

3 4 6  
++A( ,  + B ) 7 s  sin 2y’(1 -cos +$’)Q4G{aba(t-(1 +fl)r,)}(icos 6,+jsin 6,) 

+ 4 2  +,&;2 1 + ~046’ - 6)}G{ ab,(t - ( 2  + &,)) (i cos 6’ + j sin 6‘) 

+2A( ,  - ~ ) 7 , A ~ 1 - p ) 7 . ~ ~ ~ ( S ’ - ~ ) G { a b a ( t - ( 1  - ~ ) z , ) } ( i c o s  6’+jsin 6’) 
-A-prs sin y’sin ~$’QsG{aa,( t+~c,)}( icos  6, + j  sin S,)] sin mbat 

+- 4NPcb [ - 2B27s&7s cos(6’ - G)G{a,,(t - 22,)) (i cos 6‘ + j sin 6’) 
346 

+fB(1+a-1)7s sin 2y’(l -cos$$‘)Q4G{aCb(t-(1 +/?-‘)z,}(icos 6,+jsin 6,) 

+B(2+a-1)T,B;2+,-1)7~(1 +c0s(6‘-6)} 
x G { a C b ( t - ( 2 + ~ - ’ ) ~ , } ( i ~ ~ ~  6’+jsin 6’) 

+2B(1-p-1),sB;1-a- c0s(S’-G)G{a,~(t-(1 -p-’)z,))(icos 6’+jsin 6’) 

- B - p - 1 7 s ~ ~ ~  y’s in~$’Q6G{aCb( t+~~’z , ) } ( icos  6,+jsin S,)] sin q b t .  

(A.29) 
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Here 

tan( 6‘ - 6) 
2(b(T’(b)’  

6, = &-tan-’ 

Q4 = {4(bJT‘lb)2 cos2(6”6)+sinZ(6’-6))’’*, 

tan(6’-6) 
2(al T‘la) ’ 6, = 6’- tan- 

Qs = {4(aJT’la)2 c0~~(6”6)+sin~(6‘-6)}’’~,  

tan(6’- 6) 
2(clT’lc) ’ 

6, = 6’- tan- 

Q6 = {4(cl T’lc)’ cos2(6’- 6)+ sin’(6‘- 6))’”. 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 
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+ B(l - p -  l)zsB{l - - I)rs{ 1 --E sin2(6L, - 6bo)} 

x G{ acb(t - (1 - /3- ‘)rS)} { i cos(bLb + tan- ’ g tan(& - ab,)) 

+ j sin( Bib + tan - ’ tan( Sb, - abo))} 

--B-,-lrscos y ’ s i n $ ~ ’ Q 8 G { a c b ( t + ~ - 1 z , ) } ( i ~ ~ ~  68+jsin S,)] sin Wcbt. 

(A.36) 
Here 

(A.37) 

(A.40) 

tan(&, - aCb)) . (A.44) 3 & (cl T’lc) 
2(cl T‘lc) 

(b&* = tan-’+ tan(bb,-6ba)-tan-’ 



1742 M Aihara and H Inaba 

3r+ sin 4+ - r -  sin 4-  
3r+ cos 4+ + r -  cos 4-’ 6, = hib - tan- (A.46) 
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